Metamath Proof Explorer


Theorem 2ecoptocl

Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses 2ecoptocl.1 S=C×D/R
2ecoptocl.2 xyR=Aφψ
2ecoptocl.3 zwR=Bψχ
2ecoptocl.4 xCyDzCwDφ
Assertion 2ecoptocl ASBSχ

Proof

Step Hyp Ref Expression
1 2ecoptocl.1 S=C×D/R
2 2ecoptocl.2 xyR=Aφψ
3 2ecoptocl.3 zwR=Bψχ
4 2ecoptocl.4 xCyDzCwDφ
5 3 imbi2d zwR=BASψASχ
6 2 imbi2d xyR=AzCwDφzCwDψ
7 4 ex xCyDzCwDφ
8 1 6 7 ecoptocl ASzCwDψ
9 8 com12 zCwDASψ
10 1 5 9 ecoptocl BSASχ
11 10 impcom ASBSχ