Metamath Proof Explorer


Theorem ecoptocl

Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses ecoptocl.1 S=B×C/R
ecoptocl.2 xyR=Aφψ
ecoptocl.3 xByCφ
Assertion ecoptocl ASψ

Proof

Step Hyp Ref Expression
1 ecoptocl.1 S=B×C/R
2 ecoptocl.2 xyR=Aφψ
3 ecoptocl.3 xByCφ
4 elqsi AB×C/RzB×CA=zR
5 eqid B×C=B×C
6 eceq1 xy=zxyR=zR
7 6 eqeq2d xy=zA=xyRA=zR
8 7 imbi1d xy=zA=xyRψA=zRψ
9 2 eqcoms A=xyRφψ
10 3 9 syl5ibcom xByCA=xyRψ
11 5 8 10 optocl zB×CA=zRψ
12 11 rexlimiv zB×CA=zRψ
13 4 12 syl AB×C/Rψ
14 13 1 eleq2s ASψ