Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ecoptocl.1 | |
|
ecoptocl.2 | |
||
ecoptocl.3 | |
||
Assertion | ecoptocl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecoptocl.1 | |
|
2 | ecoptocl.2 | |
|
3 | ecoptocl.3 | |
|
4 | elqsi | |
|
5 | eqid | |
|
6 | eceq1 | |
|
7 | 6 | eqeq2d | |
8 | 7 | imbi1d | |
9 | 2 | eqcoms | |
10 | 3 9 | syl5ibcom | |
11 | 5 8 10 | optocl | |
12 | 11 | rexlimiv | |
13 | 4 12 | syl | |
14 | 13 1 | eleq2s | |