Metamath Proof Explorer


Theorem optocl

Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995) Shorten and reduce axiom usage. (Revised by TM, 29-Dec-2025)

Ref Expression
Hypotheses optocl.1 D = B × C
optocl.2 x y = A φ ψ
optocl.3 x B y C φ
Assertion optocl A D ψ

Proof

Step Hyp Ref Expression
1 optocl.1 D = B × C
2 optocl.2 x y = A φ ψ
3 optocl.3 x B y C φ
4 elxpi A B × C x y A = x y x B y C
5 2 eqcoms A = x y φ ψ
6 3 5 imbitrid A = x y x B y C ψ
7 6 imp A = x y x B y C ψ
8 7 exlimivv x y A = x y x B y C ψ
9 4 8 syl A B × C ψ
10 9 1 eleq2s A D ψ