Metamath Proof Explorer


Theorem optocl

Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995)

Ref Expression
Hypotheses optocl.1 D=B×C
optocl.2 xy=Aφψ
optocl.3 xByCφ
Assertion optocl ADψ

Proof

Step Hyp Ref Expression
1 optocl.1 D=B×C
2 optocl.2 xy=Aφψ
3 optocl.3 xByCφ
4 elxp3 AB×Cxyxy=AxyB×C
5 opelxp xyB×CxByC
6 5 3 sylbi xyB×Cφ
7 6 2 imbitrid xy=AxyB×Cψ
8 7 imp xy=AxyB×Cψ
9 8 exlimivv xyxy=AxyB×Cψ
10 4 9 sylbi AB×Cψ
11 10 1 eleq2s ADψ