Description: Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | opelxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 | |
|
2 | vex | |
|
3 | vex | |
|
4 | 2 3 | opth2 | |
5 | eleq1 | |
|
6 | eleq1 | |
|
7 | 5 6 | bi2anan9 | |
8 | 4 7 | sylbi | |
9 | 8 | biimprcd | |
10 | 9 | rexlimivv | |
11 | eqid | |
|
12 | opeq1 | |
|
13 | 12 | eqeq2d | |
14 | opeq2 | |
|
15 | 14 | eqeq2d | |
16 | 13 15 | rspc2ev | |
17 | 11 16 | mp3an3 | |
18 | 10 17 | impbii | |
19 | 1 18 | bitri | |