Metamath Proof Explorer


Theorem opelxp

Description: Ordered pair membership in a Cartesian product. (Contributed by NM, 15-Nov-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opelxp A B C × D A C B D

Proof

Step Hyp Ref Expression
1 elxp2 A B C × D x C y D A B = x y
2 vex x V
3 vex y V
4 2 3 opth2 A B = x y A = x B = y
5 eleq1 A = x A C x C
6 eleq1 B = y B D y D
7 5 6 bi2anan9 A = x B = y A C B D x C y D
8 4 7 sylbi A B = x y A C B D x C y D
9 8 biimprcd x C y D A B = x y A C B D
10 9 rexlimivv x C y D A B = x y A C B D
11 eqid A B = A B
12 opeq1 x = A x y = A y
13 12 eqeq2d x = A A B = x y A B = A y
14 opeq2 y = B A y = A B
15 14 eqeq2d y = B A B = A y A B = A B
16 13 15 rspc2ev A C B D A B = A B x C y D A B = x y
17 11 16 mp3an3 A C B D x C y D A B = x y
18 10 17 impbii x C y D A B = x y A C B D
19 1 18 bitri A B C × D A C B D