Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered pair theorem
opth2
Next ⟩
opthneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
opth2
Description:
Ordered pair theorem.
(Contributed by
NM
, 21-Sep-2014)
Ref
Expression
Hypotheses
opth2.1
⊢
C
∈
V
opth2.2
⊢
D
∈
V
Assertion
opth2
⊢
A
B
=
C
D
↔
A
=
C
∧
B
=
D
Proof
Step
Hyp
Ref
Expression
1
opth2.1
⊢
C
∈
V
2
opth2.2
⊢
D
∈
V
3
opthg2
⊢
C
∈
V
∧
D
∈
V
→
A
B
=
C
D
↔
A
=
C
∧
B
=
D
4
1
2
3
mp2an
⊢
A
B
=
C
D
↔
A
=
C
∧
B
=
D