Metamath Proof Explorer


Theorem opth2

Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014)

Ref Expression
Hypotheses opth2.1 C V
opth2.2 D V
Assertion opth2 A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 opth2.1 C V
2 opth2.2 D V
3 opthg2 C V D V A B = C D A = C B = D
4 1 2 3 mp2an A B = C D A = C B = D