Step |
Hyp |
Ref |
Expression |
1 |
|
elxp2 |
|- ( <. A , B >. e. ( C X. D ) <-> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
opth2 |
|- ( <. A , B >. = <. x , y >. <-> ( A = x /\ B = y ) ) |
5 |
|
eleq1 |
|- ( A = x -> ( A e. C <-> x e. C ) ) |
6 |
|
eleq1 |
|- ( B = y -> ( B e. D <-> y e. D ) ) |
7 |
5 6
|
bi2anan9 |
|- ( ( A = x /\ B = y ) -> ( ( A e. C /\ B e. D ) <-> ( x e. C /\ y e. D ) ) ) |
8 |
4 7
|
sylbi |
|- ( <. A , B >. = <. x , y >. -> ( ( A e. C /\ B e. D ) <-> ( x e. C /\ y e. D ) ) ) |
9 |
8
|
biimprcd |
|- ( ( x e. C /\ y e. D ) -> ( <. A , B >. = <. x , y >. -> ( A e. C /\ B e. D ) ) ) |
10 |
9
|
rexlimivv |
|- ( E. x e. C E. y e. D <. A , B >. = <. x , y >. -> ( A e. C /\ B e. D ) ) |
11 |
|
eqid |
|- <. A , B >. = <. A , B >. |
12 |
|
opeq1 |
|- ( x = A -> <. x , y >. = <. A , y >. ) |
13 |
12
|
eqeq2d |
|- ( x = A -> ( <. A , B >. = <. x , y >. <-> <. A , B >. = <. A , y >. ) ) |
14 |
|
opeq2 |
|- ( y = B -> <. A , y >. = <. A , B >. ) |
15 |
14
|
eqeq2d |
|- ( y = B -> ( <. A , B >. = <. A , y >. <-> <. A , B >. = <. A , B >. ) ) |
16 |
13 15
|
rspc2ev |
|- ( ( A e. C /\ B e. D /\ <. A , B >. = <. A , B >. ) -> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) |
17 |
11 16
|
mp3an3 |
|- ( ( A e. C /\ B e. D ) -> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) |
18 |
10 17
|
impbii |
|- ( E. x e. C E. y e. D <. A , B >. = <. x , y >. <-> ( A e. C /\ B e. D ) ) |
19 |
1 18
|
bitri |
|- ( <. A , B >. e. ( C X. D ) <-> ( A e. C /\ B e. D ) ) |