| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxp2 |  |-  ( <. A , B >. e. ( C X. D ) <-> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) | 
						
							| 2 |  | vex |  |-  x e. _V | 
						
							| 3 |  | vex |  |-  y e. _V | 
						
							| 4 | 2 3 | opth2 |  |-  ( <. A , B >. = <. x , y >. <-> ( A = x /\ B = y ) ) | 
						
							| 5 |  | eleq1 |  |-  ( A = x -> ( A e. C <-> x e. C ) ) | 
						
							| 6 |  | eleq1 |  |-  ( B = y -> ( B e. D <-> y e. D ) ) | 
						
							| 7 | 5 6 | bi2anan9 |  |-  ( ( A = x /\ B = y ) -> ( ( A e. C /\ B e. D ) <-> ( x e. C /\ y e. D ) ) ) | 
						
							| 8 | 4 7 | sylbi |  |-  ( <. A , B >. = <. x , y >. -> ( ( A e. C /\ B e. D ) <-> ( x e. C /\ y e. D ) ) ) | 
						
							| 9 | 8 | biimprcd |  |-  ( ( x e. C /\ y e. D ) -> ( <. A , B >. = <. x , y >. -> ( A e. C /\ B e. D ) ) ) | 
						
							| 10 | 9 | rexlimivv |  |-  ( E. x e. C E. y e. D <. A , B >. = <. x , y >. -> ( A e. C /\ B e. D ) ) | 
						
							| 11 |  | eqid |  |-  <. A , B >. = <. A , B >. | 
						
							| 12 |  | opeq1 |  |-  ( x = A -> <. x , y >. = <. A , y >. ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( x = A -> ( <. A , B >. = <. x , y >. <-> <. A , B >. = <. A , y >. ) ) | 
						
							| 14 |  | opeq2 |  |-  ( y = B -> <. A , y >. = <. A , B >. ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( y = B -> ( <. A , B >. = <. A , y >. <-> <. A , B >. = <. A , B >. ) ) | 
						
							| 16 | 13 15 | rspc2ev |  |-  ( ( A e. C /\ B e. D /\ <. A , B >. = <. A , B >. ) -> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) | 
						
							| 17 | 11 16 | mp3an3 |  |-  ( ( A e. C /\ B e. D ) -> E. x e. C E. y e. D <. A , B >. = <. x , y >. ) | 
						
							| 18 | 10 17 | impbii |  |-  ( E. x e. C E. y e. D <. A , B >. = <. x , y >. <-> ( A e. C /\ B e. D ) ) | 
						
							| 19 | 1 18 | bitri |  |-  ( <. A , B >. e. ( C X. D ) <-> ( A e. C /\ B e. D ) ) |