Metamath Proof Explorer


Theorem mp3an3

Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypotheses mp3an3.1
|- ch
mp3an3.2
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mp3an3
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 mp3an3.1
 |-  ch
2 mp3an3.2
 |-  ( ( ph /\ ps /\ ch ) -> th )
3 2 3expia
 |-  ( ( ph /\ ps ) -> ( ch -> th ) )
4 1 3 mpi
 |-  ( ( ph /\ ps ) -> th )