Metamath Proof Explorer


Theorem mp3an3

Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypotheses mp3an3.1 𝜒
mp3an3.2 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mp3an3 ( ( 𝜑𝜓 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 mp3an3.1 𝜒
2 mp3an3.2 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
3 2 3expia ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
4 1 3 mpi ( ( 𝜑𝜓 ) → 𝜃 )