Metamath Proof Explorer


Theorem 3expia

Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007) (Proof shortened by Wolf Lammen, 22-Jun-2022)

Ref Expression
Hypothesis 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion 3expia ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 1 3expb ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
3 2 expr ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )