Metamath Proof Explorer


Theorem 3expib

Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007)

Ref Expression
Hypothesis 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion 3expib ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 1 3exp ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 2 impd ( 𝜑 → ( ( 𝜓𝜒 ) → 𝜃 ) )