Metamath Proof Explorer


Theorem 3expib

Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007)

Ref Expression
Hypothesis 3exp.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion 3expib
|- ( ph -> ( ( ps /\ ch ) -> th ) )

Proof

Step Hyp Ref Expression
1 3exp.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 1 3exp
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 2 impd
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )