Metamath Proof Explorer


Theorem 3expb

Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995)

Ref Expression
Hypothesis 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion 3expb ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 1 3exp ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
3 2 imp32 ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )