Metamath Proof Explorer


Theorem mp3an12

Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses mp3an12.1
|- ph
mp3an12.2
|- ps
mp3an12.3
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mp3an12
|- ( ch -> th )

Proof

Step Hyp Ref Expression
1 mp3an12.1
 |-  ph
2 mp3an12.2
 |-  ps
3 mp3an12.3
 |-  ( ( ph /\ ps /\ ch ) -> th )
4 1 3 mp3an1
 |-  ( ( ps /\ ch ) -> th )
5 2 4 mpan
 |-  ( ch -> th )