Metamath Proof Explorer


Theorem mp3an1

Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypotheses mp3an1.1
|- ph
mp3an1.2
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mp3an1
|- ( ( ps /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 mp3an1.1
 |-  ph
2 mp3an1.2
 |-  ( ( ph /\ ps /\ ch ) -> th )
3 2 3expb
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
4 1 3 mpan
 |-  ( ( ps /\ ch ) -> th )