Metamath Proof Explorer


Theorem mp3an1

Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypotheses mp3an1.1 𝜑
mp3an1.2 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mp3an1 ( ( 𝜓𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 mp3an1.1 𝜑
2 mp3an1.2 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
3 2 3expb ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → 𝜃 )
4 1 3 mpan ( ( 𝜓𝜒 ) → 𝜃 )