Metamath Proof Explorer


Theorem mp3an2

Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypotheses mp3an2.1 𝜓
mp3an2.2 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion mp3an2 ( ( 𝜑𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 mp3an2.1 𝜓
2 mp3an2.2 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
3 2 3expa ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )
4 1 3 mpanl2 ( ( 𝜑𝜒 ) → 𝜃 )