Metamath Proof Explorer
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)
|
|
Ref |
Expression |
|
Hypotheses |
mp3an2.1 |
⊢ 𝜓 |
|
|
mp3an2.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
mp3an2 |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mp3an2.1 |
⊢ 𝜓 |
| 2 |
|
mp3an2.2 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
| 3 |
2
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → 𝜃 ) |
| 4 |
1 3
|
mpanl2 |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |