Metamath Proof Explorer


Theorem 3expa

Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995) (Revised to shorten 3exp and pm3.2an3 by Wolf Lammen, 22-Jun-2022.)

Ref Expression
Hypothesis 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion 3expa ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 3exp.1 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
2 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
3 2 1 sylbir ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → 𝜃 )