Metamath Proof Explorer


Theorem mp3an2

Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypotheses mp3an2.1
|- ps
mp3an2.2
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mp3an2
|- ( ( ph /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 mp3an2.1
 |-  ps
2 mp3an2.2
 |-  ( ( ph /\ ps /\ ch ) -> th )
3 2 3expa
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
4 1 3 mpanl2
 |-  ( ( ph /\ ch ) -> th )