Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpanl2.1 | |- ps |
|
mpanl2.2 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
||
Assertion | mpanl2 | |- ( ( ph /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl2.1 | |- ps |
|
2 | mpanl2.2 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
3 | 1 | jctr | |- ( ph -> ( ph /\ ps ) ) |
4 | 3 2 | sylan | |- ( ( ph /\ ch ) -> th ) |