Metamath Proof Explorer


Theorem opeq2

Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opeq2 A=BCA=CB

Proof

Step Hyp Ref Expression
1 eleq1 A=BAVBV
2 1 anbi2d A=BCVAVCVBV
3 preq2 A=BCA=CB
4 3 preq2d A=BCCA=CCB
5 2 4 ifbieq1d A=BifCVAVCCA=ifCVBVCCB
6 dfopif CA=ifCVAVCCA
7 dfopif CB=ifCVBVCCB
8 5 6 7 3eqtr4g A=BCA=CB