Metamath Proof Explorer


Theorem opeq2

Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opeq2 A = B C A = C B

Proof

Step Hyp Ref Expression
1 eleq1 A = B A V B V
2 1 anbi2d A = B C V A V C V B V
3 preq2 A = B C A = C B
4 3 preq2d A = B C C A = C C B
5 2 4 ifbieq1d A = B if C V A V C C A = if C V B V C C B
6 dfopif C A = if C V A V C C A
7 dfopif C B = if C V B V C C B
8 5 6 7 3eqtr4g A = B C A = C B