Metamath Proof Explorer


Theorem ifbieq1d

Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018)

Ref Expression
Hypotheses ifbieq1d.1 φψχ
ifbieq1d.2 φA=B
Assertion ifbieq1d φifψAC=ifχBC

Proof

Step Hyp Ref Expression
1 ifbieq1d.1 φψχ
2 ifbieq1d.2 φA=B
3 1 ifbid φifψAC=ifχAC
4 2 ifeq1d φifχAC=ifχBC
5 3 4 eqtrd φifψAC=ifχBC