Metamath Proof Explorer


Theorem ifbieq2i

Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2i.1 φψ
ifbieq2i.2 A=B
Assertion ifbieq2i ifφCA=ifψCB

Proof

Step Hyp Ref Expression
1 ifbieq2i.1 φψ
2 ifbieq2i.2 A=B
3 ifbi φψifφCA=ifψCA
4 1 3 ax-mp ifφCA=ifψCA
5 ifeq2 A=BifψCA=ifψCB
6 2 5 ax-mp ifψCA=ifψCB
7 4 6 eqtri ifφCA=ifψCB