Metamath Proof Explorer


Theorem ifbi

Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004)

Ref Expression
Assertion ifbi φψifφAB=ifψAB

Proof

Step Hyp Ref Expression
1 dfbi3 φψφψ¬φ¬ψ
2 iftrue φifφAB=A
3 iftrue ψifψAB=A
4 3 eqcomd ψA=ifψAB
5 2 4 sylan9eq φψifφAB=ifψAB
6 iffalse ¬φifφAB=B
7 iffalse ¬ψifψAB=B
8 7 eqcomd ¬ψB=ifψAB
9 6 8 sylan9eq ¬φ¬ψifφAB=ifψAB
10 5 9 jaoi φψ¬φ¬ψifφAB=ifψAB
11 1 10 sylbi φψifφAB=ifψAB