Metamath Proof Explorer


Theorem iffalse

Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999)

Ref Expression
Assertion iffalse ¬φifφAB=B

Proof

Step Hyp Ref Expression
1 df-if ifφAB=x|xAφxB¬φ
2 dedlemb ¬φxBxAφxB¬φ
3 2 eqabdv ¬φB=x|xAφxB¬φ
4 1 3 eqtr4id ¬φifφAB=B