Metamath Proof Explorer


Theorem iffalse

Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999)

Ref Expression
Assertion iffalse
|- ( -. ph -> if ( ph , A , B ) = B )

Proof

Step Hyp Ref Expression
1 dedlemb
 |-  ( -. ph -> ( x e. B <-> ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) ) )
2 1 abbi2dv
 |-  ( -. ph -> B = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } )
3 df-if
 |-  if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }
4 2 3 syl6reqr
 |-  ( -. ph -> if ( ph , A , B ) = B )