Metamath Proof Explorer


Theorem abbi2dv

Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)

Ref Expression
Hypothesis abbi2dv.1
|- ( ph -> ( x e. A <-> ps ) )
Assertion abbi2dv
|- ( ph -> A = { x | ps } )

Proof

Step Hyp Ref Expression
1 abbi2dv.1
 |-  ( ph -> ( x e. A <-> ps ) )
2 1 sbbidv
 |-  ( ph -> ( [ y / x ] x e. A <-> [ y / x ] ps ) )
3 clelsb1
 |-  ( [ y / x ] x e. A <-> y e. A )
4 3 bicomi
 |-  ( y e. A <-> [ y / x ] x e. A )
5 df-clab
 |-  ( y e. { x | ps } <-> [ y / x ] ps )
6 2 4 5 3bitr4g
 |-  ( ph -> ( y e. A <-> y e. { x | ps } ) )
7 6 eqrdv
 |-  ( ph -> A = { x | ps } )