Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abbi2dv.1 | |- ( ph -> ( x e. A <-> ps ) ) |
|
Assertion | abbi2dv | |- ( ph -> A = { x | ps } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | |- ( ph -> ( x e. A <-> ps ) ) |
|
2 | 1 | sbbidv | |- ( ph -> ( [ y / x ] x e. A <-> [ y / x ] ps ) ) |
3 | clelsb1 | |- ( [ y / x ] x e. A <-> y e. A ) |
|
4 | 3 | bicomi | |- ( y e. A <-> [ y / x ] x e. A ) |
5 | df-clab | |- ( y e. { x | ps } <-> [ y / x ] ps ) |
|
6 | 2 4 5 | 3bitr4g | |- ( ph -> ( y e. A <-> y e. { x | ps } ) ) |
7 | 6 | eqrdv | |- ( ph -> A = { x | ps } ) |