Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | abbi2dv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) | |
Assertion | abbi2dv | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi2dv.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝜓 ) ) | |
2 | 1 | sbbidv | ⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
3 | clelsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) | |
4 | 3 | bicomi | ⊢ ( 𝑦 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐴 ) |
5 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
6 | 2 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
7 | 6 | eqrdv | ⊢ ( 𝜑 → 𝐴 = { 𝑥 ∣ 𝜓 } ) |