Metamath Proof Explorer


Theorem abbi2dv

Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)

Ref Expression
Hypothesis abbi2dv.1 ( 𝜑 → ( 𝑥𝐴𝜓 ) )
Assertion abbi2dv ( 𝜑𝐴 = { 𝑥𝜓 } )

Proof

Step Hyp Ref Expression
1 abbi2dv.1 ( 𝜑 → ( 𝑥𝐴𝜓 ) )
2 1 sbbidv ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝑥𝐴 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) )
3 clelsb1 ( [ 𝑦 / 𝑥 ] 𝑥𝐴𝑦𝐴 )
4 3 bicomi ( 𝑦𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑥𝐴 )
5 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
6 2 4 5 3bitr4g ( 𝜑 → ( 𝑦𝐴𝑦 ∈ { 𝑥𝜓 } ) )
7 6 eqrdv ( 𝜑𝐴 = { 𝑥𝜓 } )