Metamath Proof Explorer


Theorem abbi2dv

Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)

Ref Expression
Hypothesis abbi2dv.1 φ x A ψ
Assertion abbi2dv φ A = x | ψ

Proof

Step Hyp Ref Expression
1 abbi2dv.1 φ x A ψ
2 1 sbbidv φ y x x A y x ψ
3 clelsb1 y x x A y A
4 3 bicomi y A y x x A
5 df-clab y x | ψ y x ψ
6 2 4 5 3bitr4g φ y A y x | ψ
7 6 eqrdv φ A = x | ψ