Metamath Proof Explorer


Theorem eqabdv

Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994) Avoid ax-11 . (Revised by Wolf Lammen, 6-May-2023)

Ref Expression
Hypothesis eqabdv.1 φxAψ
Assertion eqabdv φA=x|ψ

Proof

Step Hyp Ref Expression
1 eqabdv.1 φxAψ
2 1 sbbidv φyxxAyxψ
3 clelsb1 yxxAyA
4 3 bicomi yAyxxA
5 df-clab yx|ψyxψ
6 2 4 5 3bitr4g φyAyx|ψ
7 6 eqrdv φA=x|ψ