Metamath Proof Explorer


Theorem iftrue

Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion iftrue φifφAB=A

Proof

Step Hyp Ref Expression
1 dfif2 ifφAB=x|xBφxAφ
2 dedlem0a φxAxBφxAφ
3 2 eqabdv φA=x|xBφxAφ
4 1 3 eqtr4id φifφAB=A