Metamath Proof Explorer


Theorem iftrue

Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion iftrue
|- ( ph -> if ( ph , A , B ) = A )

Proof

Step Hyp Ref Expression
1 dfif2
 |-  if ( ph , A , B ) = { x | ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) }
2 dedlem0a
 |-  ( ph -> ( x e. A <-> ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) ) )
3 2 abbi2dv
 |-  ( ph -> A = { x | ( ( x e. B -> ph ) -> ( x e. A /\ ph ) ) } )
4 1 3 eqtr4id
 |-  ( ph -> if ( ph , A , B ) = A )