Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifbieq2i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| ifbieq2i.2 | ⊢ 𝐴 = 𝐵 | ||
| Assertion | ifbieq2i | ⊢ if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifbieq2i.1 | ⊢ ( 𝜑 ↔ 𝜓 ) | |
| 2 | ifbieq2i.2 | ⊢ 𝐴 = 𝐵 | |
| 3 | ifbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) → if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐴 ) ) | |
| 4 | 1 3 | ax-mp | ⊢ if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐴 ) | 
| 5 | ifeq2 | ⊢ ( 𝐴 = 𝐵 → if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) ) | |
| 6 | 2 5 | ax-mp | ⊢ if ( 𝜓 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) | 
| 7 | 4 6 | eqtri | ⊢ if ( 𝜑 , 𝐶 , 𝐴 ) = if ( 𝜓 , 𝐶 , 𝐵 ) |