Metamath Proof Explorer


Theorem ifbieq2d

Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses ifbieq2d.1 φψχ
ifbieq2d.2 φA=B
Assertion ifbieq2d φifψCA=ifχCB

Proof

Step Hyp Ref Expression
1 ifbieq2d.1 φψχ
2 ifbieq2d.2 φA=B
3 1 ifbid φifψCA=ifχCA
4 2 ifeq2d φifχCA=ifχCB
5 3 4 eqtrd φifψCA=ifχCB