Metamath Proof Explorer


Theorem ifeq2d

Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005)

Ref Expression
Hypothesis ifeq1d.1 φA=B
Assertion ifeq2d φifψCA=ifψCB

Proof

Step Hyp Ref Expression
1 ifeq1d.1 φA=B
2 ifeq2 A=BifψCA=ifψCB
3 1 2 syl φifψCA=ifψCB