Metamath Proof Explorer


Theorem opeq1

Description: Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opeq1 A = B A C = B C

Proof

Step Hyp Ref Expression
1 eleq1 A = B A V B V
2 1 anbi1d A = B A V C V B V C V
3 sneq A = B A = B
4 preq1 A = B A C = B C
5 3 4 preq12d A = B A A C = B B C
6 2 5 ifbieq1d A = B if A V C V A A C = if B V C V B B C
7 dfopif A C = if A V C V A A C
8 dfopif B C = if B V C V B B C
9 6 7 8 3eqtr4g A = B A C = B C