Metamath Proof Explorer


Theorem 2optocl

Description: Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995)

Ref Expression
Hypotheses 2optocl.1 R=C×D
2optocl.2 xy=Aφψ
2optocl.3 zw=Bψχ
2optocl.4 xCyDzCwDφ
Assertion 2optocl ARBRχ

Proof

Step Hyp Ref Expression
1 2optocl.1 R=C×D
2 2optocl.2 xy=Aφψ
3 2optocl.3 zw=Bψχ
4 2optocl.4 xCyDzCwDφ
5 3 imbi2d zw=BARψARχ
6 2 imbi2d xy=AzCwDφzCwDψ
7 4 ex xCyDzCwDφ
8 1 6 7 optocl ARzCwDψ
9 8 com12 zCwDARψ
10 1 5 9 optocl BRARχ
11 10 impcom ARBRχ