| Step |
Hyp |
Ref |
Expression |
| 1 |
|
optocl.1 |
|- D = ( B X. C ) |
| 2 |
|
optocl.2 |
|- ( <. x , y >. = A -> ( ph <-> ps ) ) |
| 3 |
|
optocl.3 |
|- ( ( x e. B /\ y e. C ) -> ph ) |
| 4 |
|
elxp3 |
|- ( A e. ( B X. C ) <-> E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) ) |
| 5 |
|
opelxp |
|- ( <. x , y >. e. ( B X. C ) <-> ( x e. B /\ y e. C ) ) |
| 6 |
5 3
|
sylbi |
|- ( <. x , y >. e. ( B X. C ) -> ph ) |
| 7 |
6 2
|
imbitrid |
|- ( <. x , y >. = A -> ( <. x , y >. e. ( B X. C ) -> ps ) ) |
| 8 |
7
|
imp |
|- ( ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) -> ps ) |
| 9 |
8
|
exlimivv |
|- ( E. x E. y ( <. x , y >. = A /\ <. x , y >. e. ( B X. C ) ) -> ps ) |
| 10 |
4 9
|
sylbi |
|- ( A e. ( B X. C ) -> ps ) |
| 11 |
10 1
|
eleq2s |
|- ( A e. D -> ps ) |