Metamath Proof Explorer


Theorem 3ecoptocl

Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 9-Aug-1995)

Ref Expression
Hypotheses 3ecoptocl.1 S=D×D/R
3ecoptocl.2 xyR=Aφψ
3ecoptocl.3 zwR=Bψχ
3ecoptocl.4 vuR=Cχθ
3ecoptocl.5 xDyDzDwDvDuDφ
Assertion 3ecoptocl ASBSCSθ

Proof

Step Hyp Ref Expression
1 3ecoptocl.1 S=D×D/R
2 3ecoptocl.2 xyR=Aφψ
3 3ecoptocl.3 zwR=Bψχ
4 3ecoptocl.4 vuR=Cχθ
5 3ecoptocl.5 xDyDzDwDvDuDφ
6 3 imbi2d zwR=BASψASχ
7 4 imbi2d vuR=CASχASθ
8 2 imbi2d xyR=AzDwDvDuDφzDwDvDuDψ
9 5 3expib xDyDzDwDvDuDφ
10 1 8 9 ecoptocl ASzDwDvDuDψ
11 10 com12 zDwDvDuDASψ
12 1 6 7 11 2ecoptocl BSCSASθ
13 12 com12 ASBSCSθ
14 13 3impib ASBSCSθ