Metamath Proof Explorer


Theorem 2ecoptocl

Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses 2ecoptocl.1
|- S = ( ( C X. D ) /. R )
2ecoptocl.2
|- ( [ <. x , y >. ] R = A -> ( ph <-> ps ) )
2ecoptocl.3
|- ( [ <. z , w >. ] R = B -> ( ps <-> ch ) )
2ecoptocl.4
|- ( ( ( x e. C /\ y e. D ) /\ ( z e. C /\ w e. D ) ) -> ph )
Assertion 2ecoptocl
|- ( ( A e. S /\ B e. S ) -> ch )

Proof

Step Hyp Ref Expression
1 2ecoptocl.1
 |-  S = ( ( C X. D ) /. R )
2 2ecoptocl.2
 |-  ( [ <. x , y >. ] R = A -> ( ph <-> ps ) )
3 2ecoptocl.3
 |-  ( [ <. z , w >. ] R = B -> ( ps <-> ch ) )
4 2ecoptocl.4
 |-  ( ( ( x e. C /\ y e. D ) /\ ( z e. C /\ w e. D ) ) -> ph )
5 3 imbi2d
 |-  ( [ <. z , w >. ] R = B -> ( ( A e. S -> ps ) <-> ( A e. S -> ch ) ) )
6 2 imbi2d
 |-  ( [ <. x , y >. ] R = A -> ( ( ( z e. C /\ w e. D ) -> ph ) <-> ( ( z e. C /\ w e. D ) -> ps ) ) )
7 4 ex
 |-  ( ( x e. C /\ y e. D ) -> ( ( z e. C /\ w e. D ) -> ph ) )
8 1 6 7 ecoptocl
 |-  ( A e. S -> ( ( z e. C /\ w e. D ) -> ps ) )
9 8 com12
 |-  ( ( z e. C /\ w e. D ) -> ( A e. S -> ps ) )
10 1 5 9 ecoptocl
 |-  ( B e. S -> ( A e. S -> ch ) )
11 10 impcom
 |-  ( ( A e. S /\ B e. S ) -> ch )