Metamath Proof Explorer


Theorem 1nqenq

Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion 1nqenq A𝑵1𝑸~𝑸AA

Proof

Step Hyp Ref Expression
1 enqer ~𝑸Er𝑵×𝑵
2 1 a1i A𝑵~𝑸Er𝑵×𝑵
3 mulidpi A𝑵A𝑵1𝑜=A
4 3 3 opeq12d A𝑵A𝑵1𝑜A𝑵1𝑜=AA
5 1pi 1𝑜𝑵
6 mulcanenq A𝑵1𝑜𝑵1𝑜𝑵A𝑵1𝑜A𝑵1𝑜~𝑸1𝑜1𝑜
7 5 5 6 mp3an23 A𝑵A𝑵1𝑜A𝑵1𝑜~𝑸1𝑜1𝑜
8 df-1nq 1𝑸=1𝑜1𝑜
9 7 8 breqtrrdi A𝑵A𝑵1𝑜A𝑵1𝑜~𝑸1𝑸
10 4 9 eqbrtrrd A𝑵AA~𝑸1𝑸
11 2 10 ersym A𝑵1𝑸~𝑸AA