Metamath Proof Explorer


Theorem mulcanenq

Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulcanenq A𝑵B𝑵C𝑵A𝑵BA𝑵C~𝑸BC

Proof

Step Hyp Ref Expression
1 oveq2 b=BA𝑵b=A𝑵B
2 1 opeq1d b=BA𝑵bA𝑵c=A𝑵BA𝑵c
3 opeq1 b=Bbc=Bc
4 2 3 breq12d b=BA𝑵bA𝑵c~𝑸bcA𝑵BA𝑵c~𝑸Bc
5 4 imbi2d b=BA𝑵A𝑵bA𝑵c~𝑸bcA𝑵A𝑵BA𝑵c~𝑸Bc
6 oveq2 c=CA𝑵c=A𝑵C
7 6 opeq2d c=CA𝑵BA𝑵c=A𝑵BA𝑵C
8 opeq2 c=CBc=BC
9 7 8 breq12d c=CA𝑵BA𝑵c~𝑸BcA𝑵BA𝑵C~𝑸BC
10 9 imbi2d c=CA𝑵A𝑵BA𝑵c~𝑸BcA𝑵A𝑵BA𝑵C~𝑸BC
11 mulcompi b𝑵c=c𝑵b
12 11 oveq2i A𝑵b𝑵c=A𝑵c𝑵b
13 mulasspi A𝑵b𝑵c=A𝑵b𝑵c
14 mulasspi A𝑵c𝑵b=A𝑵c𝑵b
15 12 13 14 3eqtr4i A𝑵b𝑵c=A𝑵c𝑵b
16 mulclpi A𝑵b𝑵A𝑵b𝑵
17 16 3adant3 A𝑵b𝑵c𝑵A𝑵b𝑵
18 mulclpi A𝑵c𝑵A𝑵c𝑵
19 18 3adant2 A𝑵b𝑵c𝑵A𝑵c𝑵
20 3simpc A𝑵b𝑵c𝑵b𝑵c𝑵
21 enqbreq A𝑵b𝑵A𝑵c𝑵b𝑵c𝑵A𝑵bA𝑵c~𝑸bcA𝑵b𝑵c=A𝑵c𝑵b
22 17 19 20 21 syl21anc A𝑵b𝑵c𝑵A𝑵bA𝑵c~𝑸bcA𝑵b𝑵c=A𝑵c𝑵b
23 15 22 mpbiri A𝑵b𝑵c𝑵A𝑵bA𝑵c~𝑸bc
24 23 3expb A𝑵b𝑵c𝑵A𝑵bA𝑵c~𝑸bc
25 24 expcom b𝑵c𝑵A𝑵A𝑵bA𝑵c~𝑸bc
26 5 10 25 vtocl2ga B𝑵C𝑵A𝑵A𝑵BA𝑵C~𝑸BC
27 26 impcom A𝑵B𝑵C𝑵A𝑵BA𝑵C~𝑸BC
28 27 3impb A𝑵B𝑵C𝑵A𝑵BA𝑵C~𝑸BC