Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mulcanenq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | opeq1d | |
3 | opeq1 | |
|
4 | 2 3 | breq12d | |
5 | 4 | imbi2d | |
6 | oveq2 | |
|
7 | 6 | opeq2d | |
8 | opeq2 | |
|
9 | 7 8 | breq12d | |
10 | 9 | imbi2d | |
11 | mulcompi | |
|
12 | 11 | oveq2i | |
13 | mulasspi | |
|
14 | mulasspi | |
|
15 | 12 13 14 | 3eqtr4i | |
16 | mulclpi | |
|
17 | 16 | 3adant3 | |
18 | mulclpi | |
|
19 | 18 | 3adant2 | |
20 | 3simpc | |
|
21 | enqbreq | |
|
22 | 17 19 20 21 | syl21anc | |
23 | 15 22 | mpbiri | |
24 | 23 | 3expb | |
25 | 24 | expcom | |
26 | 5 10 25 | vtocl2ga | |
27 | 26 | impcom | |
28 | 27 | 3impb | |