Metamath Proof Explorer


Theorem mulasspi

Description: Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion mulasspi A𝑵B𝑵C=A𝑵B𝑵C

Proof

Step Hyp Ref Expression
1 pinn A𝑵Aω
2 pinn B𝑵Bω
3 pinn C𝑵Cω
4 nnmass AωBωCωA𝑜B𝑜C=A𝑜B𝑜C
5 1 2 3 4 syl3an A𝑵B𝑵C𝑵A𝑜B𝑜C=A𝑜B𝑜C
6 mulclpi A𝑵B𝑵A𝑵B𝑵
7 mulpiord A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑵B𝑜C
8 6 7 sylan A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑵B𝑜C
9 mulpiord A𝑵B𝑵A𝑵B=A𝑜B
10 9 oveq1d A𝑵B𝑵A𝑵B𝑜C=A𝑜B𝑜C
11 10 adantr A𝑵B𝑵C𝑵A𝑵B𝑜C=A𝑜B𝑜C
12 8 11 eqtrd A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑜B𝑜C
13 12 3impa A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑜B𝑜C
14 mulclpi B𝑵C𝑵B𝑵C𝑵
15 mulpiord A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑜B𝑵C
16 14 15 sylan2 A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑜B𝑵C
17 mulpiord B𝑵C𝑵B𝑵C=B𝑜C
18 17 oveq2d B𝑵C𝑵A𝑜B𝑵C=A𝑜B𝑜C
19 18 adantl A𝑵B𝑵C𝑵A𝑜B𝑵C=A𝑜B𝑜C
20 16 19 eqtrd A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑜B𝑜C
21 20 3impb A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑜B𝑜C
22 5 13 21 3eqtr4d A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑵B𝑵C
23 dmmulpi dom𝑵=𝑵×𝑵
24 0npi ¬𝑵
25 23 24 ndmovass ¬A𝑵B𝑵C𝑵A𝑵B𝑵C=A𝑵B𝑵C
26 22 25 pm2.61i A𝑵B𝑵C=A𝑵B𝑵C