Metamath Proof Explorer


Theorem mulpiord

Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion mulpiord A𝑵B𝑵A𝑵B=A𝑜B

Proof

Step Hyp Ref Expression
1 opelxpi A𝑵B𝑵AB𝑵×𝑵
2 fvres AB𝑵×𝑵𝑜𝑵×𝑵AB=𝑜AB
3 df-ov A𝑵B=𝑵AB
4 df-mi 𝑵=𝑜𝑵×𝑵
5 4 fveq1i 𝑵AB=𝑜𝑵×𝑵AB
6 3 5 eqtri A𝑵B=𝑜𝑵×𝑵AB
7 df-ov A𝑜B=𝑜AB
8 2 6 7 3eqtr4g AB𝑵×𝑵A𝑵B=A𝑜B
9 1 8 syl A𝑵B𝑵A𝑵B=A𝑜B