Metamath Proof Explorer


Theorem fveq1i

Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003)

Ref Expression
Hypothesis fveq1i.1 F = G
Assertion fveq1i F A = G A

Proof

Step Hyp Ref Expression
1 fveq1i.1 F = G
2 fveq1 F = G F A = G A
3 1 2 ax-mp F A = G A