Metamath Proof Explorer


Theorem fveq1

Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion fveq1 F=GFA=GA

Proof

Step Hyp Ref Expression
1 breq F=GAFxAGx
2 1 iotabidv F=Gιx|AFx=ιx|AGx
3 df-fv FA=ιx|AFx
4 df-fv GA=ιx|AGx
5 2 3 4 3eqtr4g F=GFA=GA