Metamath Proof Explorer


Theorem fveq2

Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion fveq2 A=BFA=FB

Proof

Step Hyp Ref Expression
1 breq1 A=BAFxBFx
2 1 iotabidv A=Bιx|AFx=ιx|BFx
3 df-fv FA=ιx|AFx
4 df-fv FB=ιx|BFx
5 2 3 4 3eqtr4g A=BFA=FB