Metamath Proof Explorer


Theorem breq1

Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993)

Ref Expression
Assertion breq1 A=BARCBRC

Proof

Step Hyp Ref Expression
1 opeq1 A=BAC=BC
2 1 eleq1d A=BACRBCR
3 df-br ARCACR
4 df-br BRCBCR
5 2 3 4 3bitr4g A=BARCBRC