Metamath Proof Explorer


Theorem iotabidv

Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011)

Ref Expression
Hypothesis iotabidv.1 φψχ
Assertion iotabidv φιx|ψ=ιx|χ

Proof

Step Hyp Ref Expression
1 iotabidv.1 φψχ
2 1 alrimiv φxψχ
3 iotabi xψχιx|ψ=ιx|χ
4 2 3 syl φιx|ψ=ιx|χ