Metamath Proof Explorer


Theorem iotabidv

Description: Formula-building deduction for iota. (Contributed by NM, 20-Aug-2011)

Ref Expression
Hypothesis iotabidv.1
|- ( ph -> ( ps <-> ch ) )
Assertion iotabidv
|- ( ph -> ( iota x ps ) = ( iota x ch ) )

Proof

Step Hyp Ref Expression
1 iotabidv.1
 |-  ( ph -> ( ps <-> ch ) )
2 1 alrimiv
 |-  ( ph -> A. x ( ps <-> ch ) )
3 iotabi
 |-  ( A. x ( ps <-> ch ) -> ( iota x ps ) = ( iota x ch ) )
4 2 3 syl
 |-  ( ph -> ( iota x ps ) = ( iota x ch ) )