Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | fveq2 | |- ( A = B -> ( F ` A ) = ( F ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |- ( A = B -> ( A F x <-> B F x ) ) |
|
2 | 1 | iotabidv | |- ( A = B -> ( iota x A F x ) = ( iota x B F x ) ) |
3 | df-fv | |- ( F ` A ) = ( iota x A F x ) |
|
4 | df-fv | |- ( F ` B ) = ( iota x B F x ) |
|
5 | 2 3 4 | 3eqtr4g | |- ( A = B -> ( F ` A ) = ( F ` B ) ) |